Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Planta ; 259(5): 98, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522041

RESUMO

MAIN CONCLUSION: A stable genetic transformation system for Erigeron breviscapus was developed. We cloned the EbYUC2 gene and genetically transformed it into Arabidopsis thaliana and E. breviscapus. The leaf number, YUC2 gene expression, and the endogenous auxin content in transgenic plants were significantly increased. Erigeron breviscapus is a prescription drug for the clinical treatment of cardiovascular and cerebrovascular diseases. The rosette leaves have the highest content of the major active compound scutellarin and are an important component in the yield of E. breviscapus. However, little is known about the genes related to the leaf number and flowering time of E. breviscapus. In our previous study, we identified three candidate genes related to the leaf number and flowering of E. breviscapus by combining resequencing data and genome-wide association study (GWAS). However, their specific functions remain to be characterized. In this study, we cloned and transformed the previously identified full-length EbYUC2 gene into Arabidopsis thaliana, developed the first stable genetic transformation system for E. breviscapus, and obtained the transgenic plants overexpressing EbYUC2. Compared with wild-type plants, the transgenic plants showed a significant increase in the number of leaves, which was correlated with the increased expression of EbYUC2. Consistently, the endogenous auxin content, particularly indole-3-acetic acid, in transgenic plants was also significantly increased. These results suggest that EbYUC2 may control the leaf number by regulating auxin biosynthesis, thereby laying a foundation for revealing the molecular mechanism governing the leaf number and flowering time of E. breviscapus.


Assuntos
Arabidopsis , Erigeron , Erigeron/genética , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Ácidos Indolacéticos , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Transformação Genética
2.
BMC Genomics ; 24(1): 402, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460954

RESUMO

Self-incompatibility (SI) is a reproductive protection mechanism that plants acquired during evolution to prevent self-recession. As the female determinant of SI specificity, SRK has been shown to be the only recognized gene on the stigma and plays important roles in SI response. Asteraceae is the largest family of dicotyledonous plants, many of which exhibit self-incompatibility. However, systematic studies on SRK gene family in Asteraceae are still limited due to lack of high-quality genomic data. In this study, we performed the first systematic genome-wide identification of S-locus receptor like kinases (SRLKs) in the self-incompatible Asteraceae species, Erigeron breviscapus, which is also a widely used perennial medicinal plant endemic to China.52 SRLK genes were identified in the E. breviscapus genome. Structural analysis revealed that the EbSRLK proteins in E. breviscapus are conserved. SRLK proteins from E. breviscapus and other SI plants are clustered into 7 clades, and the majority of the EbSRLK proteins are distributed in Clade I. Chromosomal and duplication analyses indicate that 65% of the EbSRLK genes belong to tandem repeats and could be divided into six tandem gene clusters. Gene expression patterns obtained in E. breviscapus multiple-tissue RNA-Seq data revealed differential temporal and spatial features of EbSRLK genes. Among these, two EbSRLK genes having high expression levels in tongue flowers were cloned. Subcellular localization assay demonstrated that both of their fused proteins are localized on the plasma membrane. All these results indicated that EbSRLK genes possibly involved in SI response in E. breviscapus. This comprehensive genome-wide study of the SRLK gene family in E. breviscapus provides valuable information for understanding the mechanism of SSI in Asteraceae.


Assuntos
Erigeron , Erigeron/genética , Erigeron/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/metabolismo , Flores/genética , Flores/metabolismo , China
3.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982685

RESUMO

Erigeron breviscapus is an important medicinal plant with high medicinal and economic value. It is currently the best natural biological drug for the treatment of obliterative cerebrovascular disease and the sequela of cerebral hemorrhage. Therefore, to solve the contradiction between supply and demand, the study of genetic transformation of E. breviscapus is essential for targeted breeding. However, establishing an efficient genetic transformation system is a lengthy process. In this study, we established a rapid and efficient optimized protocol for genetic transformation of E. breviscapus using the hybrid orthogonal method. The effect of different concentrations of selection pressure (Hygromycin B) on callus induction and the optimal pre-culture time of 7 days were demonstrated. The optimal transformation conditions were as follows: precipitant agents MgCl2 + PEG, target tissue distance 9 cm, helium pressure 650 psi, bombardment once, plasmid DNA concentration 1.0 µg·µL-1, and chamber vacuum pressure 27 mmHg. Integration of the desired genes was verified by amplifying 1.02 kb of htp gene from the T0 transgenic line. Genetic transformation of E. breviscapus was carried out by particle bombardment under the optimized conditions, and a stable transformation efficiency of 36.7% was achieved. This method will also contribute to improving the genetic transformation rate of other medicinal plants.


Assuntos
Transtornos Cerebrovasculares , Erigeron , Plantas Medicinais , Erigeron/genética , Plantas Medicinais/genética , Melhoramento Vegetal , Transformação Genética
4.
J Ethnopharmacol ; 300: 115691, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087844

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The plant Erigeron breviscapus (Vant.) Hand.-Mazz.,a Chinese herbal medicine with multiple pharmacological effects and clinical applications, has been traditionally used in the treatment of paralysis caused by stroke and joint pain from rheumatism by the Yi minority people of Southwest China for generations.However, its mechanism involves many factors and has not been fully clarified. AIM OF THE STUDY: Taking intestinal flora as the target, the protective effect of extract(breviscapine) of E. breviscapus on cerebral ischemia and its possible mechanism were discussed from the perspective of brain inflammatory pathway and intestinal CYP3A4, which depends on intestinal flora. MATERIALS AND METHODS: In this study, we first verified the binding ability between major active ingredient of Erigeron breviscapus and the core target TLR4 protein by molecular docking using Vina software.We established a rat model of cerebral ischemia-reperfusion injury in vivo.The neurological function of rats was scored by Bederson score table, the cerebral infarction volume was detected by TTC staining, and the serum NSE level was detected by ELASA. 16S rRNA sequencing was used to detect the intestinal flora of rats in each group.The expression levels of cerebral TLR4/MyD88/NF-κB and CYP3A4 mRNA and protein in different intestinal segments were detected by qRT-PCR and Western blot. RESULTS: Compared with the model group, the neurological injury score, infarct volume and serum NSE concentration of breviscapine low, medium and high dose groups and nimodipine groups decreased significantly. Meanwhile, breviscapine could significantly reduce the expression level of the TLR4/MyD88/NF-κB in brain tissue and CYP3A4 in different intestinal segments of rats with cerebral ischemia-reperfusion injury. In addition, breviscapine also significantly ameliorated intestinal flora dysbiosis of rats with cerebral ischemia-reperfusion injury. CONCLUSIONS: Breviscapine can protect rats from cerebral ischemia-reperfusion injury by regulating intestinal flora, inhibiting brain TLR4/MyD88/NF-κB inflammatory pathway and intestinal CYP3A4 expression.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Erigeron , Microbioma Gastrointestinal , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Erigeron/genética , Erigeron/metabolismo , Flavonoides , Simulação de Acoplamento Molecular , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Nimodipina/farmacologia , RNA Mensageiro/metabolismo , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
5.
Am J Bot ; 109(10): 1641-1651, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36112611

RESUMO

PREMISE: Parthenogenesis is the capacity of organisms to develop embryos from unfertilized eggs. When parthenogenesis is coupled with unreduced gamete formation (apomeiosis), genetically maternal progeny result. Genetic elucidation of this form of reproduction in plants, apomixis, has important agronomic implications. However, genetic characterization of apomeiosis and parthenogenesis has been problematic in part because the traits usually co-occur and are restricted to polyploids. In this work, the inheritance of parthenogenetic embryo development, by itself, was studied at the diploid level. METHODS: Progeny resulting from a cross between a diploid (2n = 18), heterozygous, parthenogenetic pollen donor, and a diploid, wildtype, sexual seed parent were evaluated. Paternity was tested with conserved orthologous sequence (COS) markers, reproductive development of F1s was evaluated with microscopy of cleared ovules, and an amplified fragment length polymorphism (AFLP) marker (Eagc × Macg.615) co-segregating with parthenogenesis was characterized at the sequence level. RESULTS: Of 102 diploid biparental progeny, 47 exhibited parthenogenetic embryo and endosperm development, and 55 lacked development of the egg and central cell. This result is consistent with Mendelian inheritance for a single locus (P = 0.43). Isolation and sequencing of the AFLP marker indicates that it is likely a portion of a Ty-Gypsy retrotransposon. Attempts to develop a sequence-characterized amplified region marker from the AFLP were unsuccessful. CONCLUSIONS: This work shows that parthenogenesis can be transmitted simply at the diploid level. This advance is key in the development of a tractable system in Erigeron aimed at the identification of the parthenogenesis locus using genetic mapping strategies.


Assuntos
Erigeron , Magnoliopsida , Diploide , Erigeron/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Magnoliopsida/genética , Partenogênese/genética , Desenvolvimento Embrionário
6.
Arch Virol ; 167(9): 1905-1908, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35718805

RESUMO

A new virus was detected in common fleabane (Erigeron annuus) showing virus-like symptoms including leaf yellowing, mosaic, and mottling. This virus is tentatively named "fleabane yellow mosaic virus" (FbYMV). The complete genome sequence consists of two RNA segments of 7,133 nt (RNA 1) and 4,810 nt (RNA 2), excluding the poly(A) tract. Sequence analysis showed a genome organization comparable to that of members of the genus Torradovirus. The level of sequence identity between FbYMV and known members of the genus Torradovirus was below the cutoff established by the ICTV for species demarcation. Therefore, FbYMV should be classified as a new member of the genus Torradovirus.


Assuntos
Erigeron , Vírus do Mosaico , Secoviridae , Erigeron/genética , Genoma Viral , Genômica , Vírus do Mosaico/genética , Filogenia , Doenças das Plantas , RNA Viral/genética , Secoviridae/genética
7.
Plant J ; 109(5): 1305-1318, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34907610

RESUMO

Distant species producing the same secondary metabolites is an interesting and common phenomenon in nature. A classic example of this is scutellarein whose derivatives have been used clinically for more than 30 years. Scutellarein occurs in significant amounts in species of two different orders, Scutellaria baicalensis and Erigeron breviscapus, which diverged more than 100 million years ago. Here, according to the genome-wide selection and functional identification of 39 CYP450 genes from various angiosperms, we confirmed that only seven Scutellaria-specific CYP82D genes and one Erigeron CYP706X gene could perform the catalytic activity of flavone 6-hydroxylase (F6H), suggesting that the convergent evolution of scutellarein production in these two distant species was caused by two independently evolved CYP450 families. We also identified seven Scutellaria-specific CYP82D genes encoding flavone 8-hydroxylase (F8H). The evolutionary patterns of CYP82 and CYP706 families via kingdom-wide comparative genomics highlighted the evolutionary diversity of CYP82D and the specificity of CYP706X in angiosperms. Multi-collinearity and phylogenetic analysis of CYP82D in Scutellaria confirmed that the function of F6H evolved from F8H. Furthermore, the SbaiCYP82D1A319D , EbreCYP706XR130A , EbreCYP706XF312D and EbreCYP706XA318D mutants can significantly decrease the catalytic activity of F6H, revealing the contribution of crucial F6H amino acids to the scutellarein biosynthesis of distant species. This study provides important insights into the multi-origin evolution of the same secondary metabolite biosynthesis in the plant kingdom.


Assuntos
Asteraceae , Erigeron , Lamiaceae , Asteraceae/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Erigeron/química , Erigeron/genética , Erigeron/metabolismo , Flavonas , Genômica , Humanos , Lamiaceae/metabolismo , Filogenia
8.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6149-6162, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951242

RESUMO

R2 R3-MYB transcription factors are ubiquitous in plants, playing a role in the regulation of plant growth, development, and secondary metabolism. In this paper, the R2 R3-MYB transcription factors were identified by bioinformatics analysis of the genomic data of Erigeron breviscapus, and their gene sequences, structures, physical and chemical properties were analyzed. The functions of R2 R3-MYB transcription factors were predicted by cluster analysis. Meanwhile, the expression patterns of R2 R3-MYB transcription factors in response to hormone treatments were analyzed. A total of 108 R2 R3-MYB transcription factors, named EbMYB1-EbMYB108, were identified from the genome of E. breviscapus. Most of the R2 R3-MYB genes carried 2-4 exons. The phylogenetic tree of MYBs in E. breviscapus and Arabidopsis thaliala was constructed, which classified 234 MYBs into 30 subfamilies. The MYBs in the five MYB subfamilies of A.thaliala were clustered into independent clades, and those in E. breviscapus were clustered into four clades. The transcriptome data showed that MYB genes were differentially expressed in different tissues of E. breviscapus and in response to the treatments with exogenous hormones such as ABA, SA, and GA for different time. The transcription of 13 R2 R3-MYB genes did not change significantly, and the expression patterns of some genes were up-regulated or down-regulated with the extension of hormone treatment time. This study provides a theoretical basis for revealing the mechanisms of R2 R3-MYB transcription factors in regulating the growth and development, stress(hormone) response, and active ingredient accumulation in E. breviscapus.


Assuntos
Erigeron , Genes myb , Proteínas de Plantas , Fatores de Transcrição , Erigeron/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Mol Ecol Resour ; 21(1): 153-169, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32985109

RESUMO

Erigeron breviscapus is an important medicinal plant in Compositae and the first species to realize the whole process from the decoding of the draft genome sequence to scutellarin biosynthesis in yeast. However, the previous low-quality genome assembly has hindered the optimization of candidate genes involved in scutellarin synthesis and the development of molecular-assisted breeding based on the genome. Here, the E. breviscapus genome was updated using PacBio RSII sequencing data and Hi-C data, and increased in size from 1.2 Gb to 1.43 Gb, with a scaffold N50 of 156.82 Mb and contig N50 of 140.95 kb, and a total of 43,514 protein-coding genes were obtained and oriented onto nine pseudo-chromosomes, thus becoming the third plant species assembled to chromosome level after sunflower and lettuce in Compositae. Fourteen genes with evidence for positive selection were identified and found to be related to leaf morphology, flowering and secondary metabolism. The number of genes in some gene families involved in flavonoid biosynthesis in E. breviscapus have been significantly expanded. In particular, additional candidate genes involved in scutellarin biosynthesis, such as flavonoid-7-O-glucuronosyltransferase genes (F7GATs) were identified using updated genome. In addition, three candidate genes encoding indole-3-pyruvate monooxygenase YUCCA2 (YUC2), serine carboxypeptidase-like 18 (SCPL18), and F-box protein (FBP), respectively, were identified to be probably related to leaf development and flowering by resequencing 99 individuals. These results provided a substantial genetic basis for improving agronomic and quality traits of E. breviscapus, and provided a platform for improving other draft genome assemblies to chromosome-level.


Assuntos
Erigeron , Genoma de Planta , Asteraceae , Erigeron/genética , Plantas Medicinais/genética
10.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-921773

RESUMO

R2 R3-MYB transcription factors are ubiquitous in plants, playing a role in the regulation of plant growth, development, and secondary metabolism. In this paper, the R2 R3-MYB transcription factors were identified by bioinformatics analysis of the genomic data of Erigeron breviscapus, and their gene sequences, structures, physical and chemical properties were analyzed. The functions of R2 R3-MYB transcription factors were predicted by cluster analysis. Meanwhile, the expression patterns of R2 R3-MYB transcription factors in response to hormone treatments were analyzed. A total of 108 R2 R3-MYB transcription factors, named EbMYB1-EbMYB108, were identified from the genome of E. breviscapus. Most of the R2 R3-MYB genes carried 2-4 exons. The phylogenetic tree of MYBs in E. breviscapus and Arabidopsis thaliala was constructed, which classified 234 MYBs into 30 subfamilies. The MYBs in the five MYB subfamilies of A.thaliala were clustered into independent clades, and those in E. breviscapus were clustered into four clades. The transcriptome data showed that MYB genes were differentially expressed in different tissues of E. breviscapus and in response to the treatments with exogenous hormones such as ABA, SA, and GA for different time. The transcription of 13 R2 R3-MYB genes did not change significantly, and the expression patterns of some genes were up-regulated or down-regulated with the extension of hormone treatment time. This study provides a theoretical basis for revealing the mechanisms of R2 R3-MYB transcription factors in regulating the growth and development, stress(hormone) response, and active ingredient accumulation in E. breviscapus.


Assuntos
Erigeron/genética , Regulação da Expressão Gênica de Plantas , Genes myb , Filogenia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
11.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093420

RESUMO

Erigeron breviscapus (Vant.) Hand.-Mazz. is a famous traditional Chinese medicine that has positive effects on the treatment of cardiovascular and cerebrovascular diseases. With the increase of market demand (RMB 500 million per year) and the sharp decrease of wild resources, it is an urgent task to cultivate high-quality and high-yield varieties of E. breviscapus. However, it is difficult to obtain homozygous lines in breeding due to the self-incompatibility (SI) of E. breviscapus. Here, we first proved that E. breviscapus has sporophyte SI (SSI) characteristics. Characterization of the ARC1 gene in E. breviscapus showed that EbARC1 is a constitutive expression gene located in the nucleus. Overexpression of EbARC1 in Arabidopsis thaliana L. (Col-0) could cause transformation of transgenic lines from self-compatibility (SC) into SI. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that EbARC1 and EbExo70A1 interact with each other in the nucleus, and the EbARC1-ubox domain and EbExo70A1-N are the key interaction regions, suggesting that EbARC1 may ubiquitinate EbExo70A to regulate SI response. This study of the SSI mechanism in E. breviscapus has laid the foundation for further understanding SSI in Asteraceae and breeding E. breviscapus varieties.


Assuntos
Arabidopsis , Erigeron/genética , Proteínas de Plantas , Plantas Geneticamente Modificadas , Ubiquitina-Proteína Ligases , Arabidopsis/enzimologia , Arabidopsis/genética , Erigeron/enzimologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
12.
PLoS One ; 14(12): e0226599, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31860684

RESUMO

The MADS-box gene family encodes transcription factors with many biological functions that extensively regulate plant growth, development and reproduction. Erigeron breviscapus is a medicinal herb used widely in traditional Chinese medicine, and is believed to improve blood circulation and ameliorate platelet coagulation. In order to gain a detailed understanding of how transcription factor expression may regulate the growth of this potentially important medicinal plant, a genome-wide analysis of the MADS-box gene family of E. breviscapus is needed. In the present study, 44 MADS-box genes were identified in E. breviscapus and categorized into five subgroups (MIKC, Mα, Mß, Mγ and Mδ) according to their phylogenetic relationships with the Arabidopsis MADS-box genes. Additionally, the functional domain, subcellular location and motif compositions of the E. breviscapus MADS-box gene products were characterized. The expression levels for each of the E. breviscapus MADS-box (EbMADS) genes were analyzed in flower, leaf, stem and root organs, and showed that the majority of EbMADS genes were expressed in flowers. Meanwhile, some MADS genes were found to express high levels in leaf, stem and root, indicating that the MADS-box genes are involved in various aspects of the physiological and developmental processes of the E. breviscapus. The results from gene expression analysis under different pollination treatments revealed that the MADS-box genes were highly expressed after non-pollinated treatment. To the best of our knowledge, this study describes the first genome-wide analysis of the E. breviscapus MADS-box gene family, and the results provide valuable information for understanding of the classification, cloning and putative functions of the MADS-box family.


Assuntos
Erigeron/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Domínio MADS/genética , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/química , Família Multigênica , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Caules de Planta/genética , Plantas Medicinais , Domínios Proteicos
13.
Mol Biol Rep ; 46(3): 3157-3165, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30963357

RESUMO

Based on the transcriptome data, using RACE techniques, we cloned the full-length EbSRLK1 gene in a medicinal, self-incompatible Asteraceae species, Erigeron breviscapus. Bioinformatics approaches were used to analyze the DNA and protein sequences, physical and chemical properties, and domains of the encoded protein. The full-length EbSRLK1 cDNA is 2891 base pairs (bp) with an open reading frame (ORF) of 2634 bp, which encodes the EbSRLK1 protein with 878 amino acids and an estimated molecular weight of 98.13 kD. The EbSRLK1 protein has the characteristic domain structure of S-locus receptor-like protein kinases, which contains one transmembrane domain but lacks the signal peptide. Quantitative real-time PCR (qRT-PCR) analysis showed that the EbSRLK1 gene is lowly expressed in roots, stems and leaves, but highly expressed in flowers, especially in flowers one day prior to opening. Western blot analysis showed that the EbSRLK1 protein is expressed in stems, leaves, and flowers, but is almost undetectable in roots. The EbSRLK1 protein expression is induced in self-pollinated but not in cross-pollinated E. breviscapus flowers. Cloning and expression analysis of EbSRLK1 lay a solid foundation for elucidating the role of EbSRLK1 in regulating self-incompatibility in E. breviscapus.


Assuntos
Clonagem Molecular , Erigeron/genética , Expressão Gênica , Proteínas de Plantas/genética , Autoincompatibilidade em Angiospermas/genética , Biologia Computacional/métodos , DNA Complementar , Erigeron/metabolismo , Fases de Leitura Aberta , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Análise de Sequência de DNA
14.
J Agric Food Chem ; 67(10): 2848-2855, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30821967

RESUMO

Two versatile UDP-glucosyltransferases, UGT75L25 and UGT75X1, were isolated from Erigeron breviscapus. The enzymes display high sequence identity to flavonoid 7- O-glucosyltransferase from Malus species and cluster to the phylogenetic group L of plant glucosyltransferases, also involved in the formation of hydroxycinnamoyl glucose esters, which are used as bifunctional donors in the glucosylation or acylation of anthocyanins. The enzymes, functionally expressed in Escherichia coli, exhibit broad substrate specificity toward 21 structurally diverse types of phenolic acids, including (hydroxy)cinnamates, vanillic acid, 3-hydroxycoumarin, and 7-hydroxyflavonoids. The catalytic characteristics of UGT75L25 and UGT75X1 were exploited to generate the corresponding acyl-glucose-esters or glucosides with high efficiency. These findings demonstrate the significant potential of acyl-glucose-esters in the further enzymatic synthesis of bioactive anthocyanins.


Assuntos
Erigeron/enzimologia , Glucosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Erigeron/química , Erigeron/genética , Ésteres/química , Ésteres/metabolismo , Glucose/química , Glucose/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Especificidade por Substrato
15.
Zhongguo Zhong Yao Za Zhi ; 43(10): 2048-2052, 2018 May.
Artigo em Chinês | MEDLINE | ID: mdl-29933669

RESUMO

The electroporation method was performed to transfer plasmid DNA of PBI-1300 carrying GFP gene into Agrobacterium rhizogenes C58C1 strains. Mediated by A. rhizogenes C58C1, the GFP gene were transformed into Erigeron breviscapus aseptic leaves by leaf disc method, then the hairy roots were induced and the infected hairy roots were screened by hygromycin resistance. The chromosomal DNA of the hairy root was used as the templates for the PCR amplification with the GFP-specific primers and then the expected amplified DNA bands appeared, the green fluorescent of GFP in the cut hairy roots was observed by two-photon microscope. These results indicated that GFP gene was integrated into the genome of E. breviscapus and was expressed stably. This study laid the groundwork for foreign gene high-efficiency expression inthe genetic transformation system for hairy root culture of E. breviscapus.


Assuntos
Erigeron/genética , Raízes de Plantas/genética , Técnicas de Cultura de Tecidos , Transformação Genética , Agrobacterium , Eletroporação , Erigeron/crescimento & desenvolvimento , Folhas de Planta , Raízes de Plantas/crescimento & desenvolvimento , Plasmídeos
16.
Nat Commun ; 9(1): 448, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386648

RESUMO

The flavonoid extract from Erigeron breviscapus, breviscapine, has increasingly been used to treat cardio- and cerebrovascular diseases in China for more than 30 years, and plant supply of E. breviscapus is becoming insufficient to satisfy the growing market demand. Here we report an alternative strategy for the supply of breviscapine by building a yeast cell factory using synthetic biology. We identify two key enzymes in the biosynthetic pathway (flavonoid-7-O-glucuronosyltransferase and flavone-6-hydroxylase) from E. breviscapus genome and engineer yeast to produce breviscapine from glucose. After metabolic engineering and optimization of fed-batch fermentation, scutellarin and apigenin-7-O-glucuronide, two major active ingredients of breviscapine, reach to 108 and 185 mg l-1, respectively. Our study not only introduces an alternative source of these valuable compounds, but also provides an example of integrating genomics and synthetic biology knowledge for metabolic engineering of natural compounds.


Assuntos
Erigeron/genética , Flavonoides/biossíntese , Saccharomyces cerevisiae/genética , Apigenina/genética , Apigenina/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Erigeron/metabolismo , Evolução Molecular , Fermentação , Flavonoides/genética , Engenharia Genética/métodos , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Engenharia Metabólica/métodos , Anotação de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Biologia Sintética
17.
Gigascience ; 6(6): 1-7, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431028

RESUMO

Background: The plants in the Erigeron genus of the Compositae (Asteraceae) family are commonly called fleabanes, possibly due to the belief that certain chemicals in these plants repel fleas. In the traditional Chinese medicine, Erigeron breviscapus , which is native to China, was widely used in the treatment of cerebrovascular disease. A handful of bioactive compounds, including scutellarin, 3,5-dicaffeoylquinic acid, and 3,4-dicaffeoylquinic acid, have been isolated from the plant. With the purpose of finding novel medicinal compounds and understanding their biosynthetic pathways, we propose to sequence the genome of E. breviscapus . We assembled the highly heterozygous E. breviscapus genome using a combination of PacBio single-molecular real-time sequencing and next-generation sequencing methods on the Illumina HiSeq platform. The final draft genome is approximately 1.2 Gb, with contig and scaffold N50 sizes of 18.8 kb and 31.5 kb, respectively. Further analyses predicted 37 504 protein-coding genes in the E. breviscapus genome and 8172 shared gene families among Compositae species. The E. breviscapus genome provides a valuable resource for the investigation of novel bioactive compounds in this Chinese herb.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Erigeron/genética , Genoma de Planta , Perfilação da Expressão Gênica , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Medicina Tradicional Chinesa , Proteínas de Plantas/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA
18.
PLoS One ; 10(12): e0143881, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26656917

RESUMO

BACKGROUND: Erigeron breviscapus, a well-known traditional Chinese medicinal herb, is broadly used in the treatment of cerebrovascular disease. Scutellarin, a kind of flavonoids, is considered as the material base of the pharmaceutical activities in E. breviscapus. The stable and high content of scutellarin is critical for the quality and efficiency of E. breviscapus in the clinical use. Therefore, understanding the molecular mechanism of scutellarin biosynthesis is crucial for metabolic engineering to increase the content of the active compound. However, there is virtually no study available yet concerning the genetic research of scutellarin biosynthesis in E. breviscapus. RESULTS: Using Illumina sequencing technology, we obtained over three billion bases of high-quality sequence data and conducted de novo assembly and annotation without prior genome information. A total of 182,527 unigenes (mean length = 738 bp) were found. 63,059 unigenes were functionally annotated with a cut-off E-value of 10(-5). Next, a total of 238 (200 up-regulated and 38 down-regulated genes) and 513 (375 up-regulated and 138 down-regulated genes) differentially expressed genes were identified at different time points after methyl jasmonate (MeJA) treatment, which fell into categories of 'metabolic process' and 'cellular process' using GO database, suggesting that MeJA-induced activities of signal pathway in plant mainly led to re-programming of metabolism and cell activity. In addition, 13 predicted genes that might participate in the metabolism of flavonoids were found by two co-expression analyses in E. breviscapus. CONCLUSIONS: Our study is the first to provide a transcriptome sequence resource for E. breviscapus plants after MeJA treatment and it reveals transcriptome re-programming upon elicitation. As the result, several putative unknown genes involved in the metabolism of flavonoids were predicted. These data provide a valuable resource for the genetic and genomic studies of special flavonoids metabolism and further metabolic engineering in E. breviscapus.


Assuntos
Acetatos/farmacologia , Apigenina/biossíntese , Ciclopentanos/farmacologia , Erigeron/genética , Erigeron/metabolismo , Glucuronatos/biossíntese , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Sequência de Bases , DNA de Plantas/genética , Medicamentos de Ervas Chinesas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/genética
19.
BMC Plant Biol ; 15: 248, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26463824

RESUMO

BACKGROUND: Self-incompatibility (SI) is a widespread and important mating system that promotes outcrossing in plants. Erigeron breviscapus, a medicinal herb used widely in traditional Chinese medicine, is a self-incompatible species of Asteraceae. However, the genetic characteristics of SI responses in E. breviscapus remain largely unknown. To understand the possible mechanisms of E. breviscapus in response to SI, we performed a comparative transcriptomic analysis with capitulum of E. breviscapus after self- and cross-pollination, which may provide valuable information for analyzing the candidate SI-associated genes of E. breviscapus. METHODS: Using a high-throughput next-generation sequencing (Illumina) approach, the transcriptionexpression profiling of the different genes of E. breviscapus were obtained, some results were verified by quantitative real time PCR (qRT-PCR). RESULTS: After assembly, 63,485 gene models were obtained (average gene size 882 bp; N50 = 1485 bp), among which 38,540 unigenes (60.70% of total gene models) were annotated by comparisons with four public databases (Nr, Swiss-Prot, KEGG and COG): 38,338 unigenes (60.38% of total gene models) showed high homology with sequences in the Nr database. Differentially expressed genes were identified among the three cDNA libraries (non-, self- and cross-pollinated capitulum of E. breviscapus), and approximately 230 genes might be associated with SI responses. Several these genes were upregulated in self-pollinated capitulum but downregulated in cross-pollinated capitulum, such as SRLK (SRK-like) and its downstream signal factor, MLPK. qRT-PCR confirmed that the expression patterns of EbSRLK1 and EbSRLK3 genes were not closely related to SI of E. breviscapus. CONCLUSIONS: This work represents the first large-scale analysis of gene expression in the self-pollinated and cross-pollinated flowers of E. breviscapus. A larger number of notable genes potentially involved in SI responses showed differential expression, including genes playing crucial roles in cell-cell communication, signal transduction and the pollination process. We thus hypothesized that those genes showing differential expression and encoding critical regulators of SI responses, such as MLPK, ARC1, CaM, Exo70A1, MAP, SF21 and Nod, might affect SI responses in E. breviscapus. Taken together, our study provides a pool of SI-related genes in E. breviscapus and offers a valuable resource for elucidating the mechanisms of SI in Asteraceae.


Assuntos
Erigeron/genética , Erigeron/fisiologia , Genes de Plantas , Estudos de Associação Genética , Polinização/genética , Autofertilização/genética , Autoincompatibilidade em Angiospermas/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Ontologia Genética , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de RNA , Transdução de Sinais/genética
20.
Zhongguo Zhong Yao Za Zhi ; 39(7): 1220-4, 2014 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-25011257

RESUMO

OBJECTIVE: The SSR information in the transcriptome of Erigeron breviscapus was analyzed in this study, in order to further develop new functional genes SSR markers laid a solid foundation. METHOD: SSR loci were searched in all of 52,060 unigenes by using est_timmer. Perl program and SSR primers were designed by Primer3. Furthermore, 36 pairs of primers were randomly selected for the polymorphism analysis on 13 Erigeron breviscapus plants collected from different places. RESULT: A total of 3639 SSRs were found in the transcriptome of Erigeron breviscapus, distributed in 3260 unigenes with the distribution frequency of 6.99%. Di-nucleotide repeat was the main type, account for as much as 34.41% of all SSRs, followed by mono-nucleotide (31.41%) and tri-nucleotide repeat motif (28.08%). The di-nucleotide repeat motifs of AT/AT and AC/GT were the predominant repeat types (28.71%). The tri-nucleotide repeat motifs of AAT/AT was the predominant repeat types (7.94%). For validation the availability of those SSR primers, we randomly selected 36 pairs of primers for PCR amplification. Among them, 34 pair primers (94.44%) produced clear and reproductive bands, 19 pair primers showed polymorphism (52.78%), and 13 Erigeron breviscapus plants were divided into 2 groups. CONCLUSION: There are numerous SSRs in Erigeron breviscapus transcriptome with high frequency and various types, this will provide abundant candidate molecular markers for genetic diversity study and genetic map in this plant.


Assuntos
Erigeron/genética , Repetições de Microssatélites , Polimorfismo Genético , Transcriptoma , China , Primers do DNA/genética , Erigeron/classificação , Variação Genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...